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Abstract

Nowadays, the increasing importance of acoustic noise in industry makes it essential to establish reliable
simulation tools. Furthermore, many industries need to know the acoustic performances of the products
that they achieve or use. Indeed, these components are often parts of larger set-ups (like cars, airplanes,
concert halls, theatres, etc.) for which numerical acoustic simulations are run from the earliest design stage.
In that framework, this paper proposes a new updating technique for acoustic simulations, which is based
on the constitutive relation error (CRE) proposed by Ladev"eze in structural dynamics.
The technique consists of improving the quality of acoustic models by reducing the constitutive relation

error below a prescribed level.
The CRE updating method aims at minimizing a cost function with respect to physical parameters of the

model. Both modelling error (i.e., the error related to the approximation of physical phenomena) and
measurement error are taken into account. Particular attention is paid to the admittance coefficient, which
is probably the most important and the least known acoustic parameter, and the application to two-
dimensional finite element numerical simulations is presented showing how promising the technique is.
The ultimate goal of the approach should be to improve the numerical simulations of the acoustic

pressure level of real-life complex set-ups like cars, aircrafts, satellite launchers, etc.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, many manufacturing companies have to control acoustic noise either to improve
user comfort or to decrease environmental pollution. Most of the acoustic simulations are
performed using finite element or boundary element software.
While computers become faster and faster, allowing decreasing computational time together

with smaller calculation error, the acoustic models remain unchanged making the simulations
unreliable in many cases due to the complexity of the physical phenomena. For instance, the
approximative evaluation of the admittance coefficients that are used to run numerical
simulations is an example of the reason why simulations deviate from experimental data. Indeed,
in most of the cases, admittance coefficients are evaluated by achieving experimental
measurements on a few samples of a material for which such coefficient is needed. The most
classical way to evaluate that coefficient uses a laboratory set-up of a Kundt duct type. The
admittance coefficient An is generally assumed real, which is obviously wrong, since phase shift
occurs for waves propagating in porous media. Presently, manufacturers’ data are limited to the
absorption coefficient, which is equivalent to giving the modulus of the impedance or admittance
coefficient.
In this paper, the idea is to evaluate in situ frequency-dependent complex admittance

coefficients on the base of a validation stage for a complex incident field. Sound
pressure measurements are achieved at a few points of the acoustic domain and admittance
coefficients are tuned to verify admittance relations as closely as possible with respect to the
physical phenomena.
The values of the admittance coefficients obtained after updating can be used in future

numerical simulations. For example, these parameters should be useful in a prototyping phase,
when changing the configuration (e.g., the shape of the acoustic domain). The updated values are
introduced in the new numerical model of the acoustic domain enabling a good prediction of the
acoustic pressure level without having to build a new prototype of the studied set-up. Three
different kinds of models are to be considered: the continuous model, the numerical model, and
the experimental one. While the continuous and the numerical models are usually the reference
and the approximate models, respectively, a significant difference appears in the following
approach. Indeed, one updates here the continuous model (that is approximated by a numerical
model) with respect to experimental data, which constitute the reference.
Concerning the acoustics, the literature treating updating techniques seems to be poor so that

one has to refer to structural dynamics to get an overview of the existing possibly applicable
updating methods. Indeed, the governing equations in dynamics are very similar to those of
acoustics; the acoustic pressure and velocities are analogous to the displacement and stresses,
respectively in structural dynamics. That domain offers more bibliographic sources, leading one
to distinguish between direct and parametric updating techniques. Direct techniques mainly
consist of modifying the mass and stiffness matrices so that numerically simulated and
experimentally measured frequency response functions agree as well as possible in terms of
natural frequencies. Such modifications lack physical meaning, making the validity domain thin if
the configuration changes. In the case of parametric updating techniques, one has to minimize a
cost function by tuning physical parameters of the model. The sensitivity of the cost function with
respect to the different parameters allows one to choose which of these have to be tuned. That
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choice can also vary with the geometrical localization in the studied domain. A more extended
state of the art on validation methods is presented in Refs. [1,2].
The present paper proposes the application of a particular parametric updating technique based

on the constitutive relation error to acoustics, and to make use of it to obtain accurate evaluation
of complex admittance coefficients. The fundamentals of the CRE were first developed by
Ladev"eze in structural dynamics (see Refs. [3–5]), and Ref. [6] introduced the idea of applying the
CRE to acoustics. The main idea in the CRE technique consists of splitting the data and equations
of the model into reliable and less reliable information. Whether one trusts given data or equation
has to be related to the assumptions made to establish it.
The paper is organized as follows. Firstly, the CRE is applied to acoustics, and reliable and less

reliable data are set. Admissible pressure and velocity fields verifying the reliable equations are
built and used to define the CRE. Secondly, measurements related errors are discussed, which
leads on to considering the modified CRE. Afterwards, the paper deals with a particular
numerical approximation of the continuous model, the finite element discretization. Finally,
simulations are run on a 2D car cabin to validate the method.

2. The CRE applied to acoustics

2.1. Principles

One deals with an acoustic problem that is defined on a domain O with boundary @O: In linear
acoustics, one assumes small harmonic perturbations of the particle velocity ~vv; the pressure p and
the density r of the isotropic medium so that these oscillations around steady values are,
respectively, written as follows:

~vv ¼ ~vv0ejot;

p ¼ p0ejot;

r ¼ r0ejot; ð1Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
; o the angular frequency and t the time.

Consider that the reliable equations are the wave equation, called the Helmholtz equation in the
frequency domain, and the Dirichlet boundary condition defined on @1O (see Fig. 1 for an
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illustration of the boundaries):

Helmholtz :Dp þ k2p ¼ 0;

Dirichlet B:C: :pj@1O
¼ %p; ð2Þ

where c is the sound velocity, and k ¼ o=c is the wave number.
The less reliable equations were originally the constitutive relations [3]. Here, it will be assumed

that the mixed Robin boundary condition defined on @3O; which links the pressure to the normal
velocity by an impedance coefficient Zn; and the Neumann B.C. defined on @2O are the less
reliable data. That latter boundary condition is rewritten in what follows using the Euler
equation, which links the pressure gradient to the velocity vector. The resulting two equations are:

Robin B:C: :vnj@3O
¼ Anp;

Neumann B:C: :vnj@2O
¼

j

or
@p

@n
j@2O ¼ %vn; ð3Þ

where An ¼ Z�1
n is the complex admittance coefficient, and %vn is the prescribed velocity on @2O

which is known either by measurement or by structural dynamic computation. Discussions are
still open concerning the most appropriate form of admittance relation (3). More details can be
found in Ref. [7].
One has chosen here to express the impedance relation under the form:

vn ¼ c1p þ c2
@p

@t
; ð4Þ

where c1 and c2 are constants and not functions of time. Eq. (4) is equivalent in the frequency
domain to

vn ¼ ðc1 þ joc2Þp ¼ Anp: ð5Þ

2.2. Admissibility

Now define two Hilbert spaces V1 and V2 of square-integrable functions together with their first
derivatives in %O ¼ O,@O:

V1 ¼ H1
Dð %OÞ ¼ fpAH1ð %OÞjp ¼ %p on @1Og;

V2 ¼ H1
0 ð %OÞ ¼ fwAH1ð %OÞjw ¼ 0 on @1Og:

The variational formulation corresponding to the Helmholtz equation with associated boundary
conditions as given in Eqs. (2) and (3) is expressed by

Find pAV1j
Z
O
ð=p=w� � k2pw�ÞdOþ jor

Z
@3O

vnw�dGþ jor
Z
@2O

%vnw�dG ¼ 0 8wAV2; ð6Þ

where � denotes the complex conjugate. The solution sðp; vn; %vnÞ (where p; vn; %vn are independent
fields) ASad (is admissible) if pAV1 and Eq. (6) is verified.
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2.3. Definition of the CRE

The CRE is an error which measures the verification of the less reliable equations defined by
Eq. (3). Its value is always positive or equal to zero. It is equal to zero if the Neumann and the
Robin equations are satisfied. The following expression for the CRE will be used:

* error from the Robin BC: o2r2
R
@3O

ðvn � AnpÞ�ðvn � AnpÞdG;
* error from the Neumann BC

o2r2
Z
@2O

%vn �
j

or
@p

@n

� ��
%vn �

j

or
@p

@n

� �
dG:

The CRE x2o measuring the modelling error at angular frequency o is the sum of the errors related
to the poorly reliable relations:

x2oðp; vn; %vnÞ ¼
L2

ðL2 þ L3Þ
go2r2

Z
@2O

%vn �
j

or
@p

@n

� ��
%vn �

j

or
@p

@n

� �
dG

þ
L3

ðL2 þ L3Þ
ð1� gÞo2r2

Z
@3O

ðvn � AnpÞ�ðvn � AnpÞdG ð7Þ

where
L2 ¼

R
@2O
dG;

L3 ¼
R
@3O
dG:

(

The factor gð0pgp1Þ allows one to weight differently the error related to the impedance relation
(Robin B.C.) and the one related to the system excitation (Neumann B.C.). The factor g is to be
adjusted by taking into account the a priori knowledge of the studied set-up. For example, if the
set-up excitation is very complex and it is known to be not reliable, the parameter g should be
tuned in the function (i.e., g should tend to zero) so that the updating does not focus on the error
on that B.C. only since it is dominant in that case. If no information is available at this subject, g is
set to 0.5.
The interest of using such coefficient is explained by the following example. Suppose that the

updating process is stopped when reaching a 9% residual CRE level at the end of the validation
step (one assumes that 9% is the accuracy level needed for the problem studied). Analyzing the
contribution of the error on the Neumann B.C.; ðxN

o Þ and the one on the Robin B.C. ðx
R
oÞ at the

end of the optimization shows:

xo ¼ 0:5�xN
o þ 0:5�xR

o ¼ 0:5�12%þ 0:5�6% ¼ 9%: ð8Þ

The corresponding updated parameters verify the Neumann B.C. with an error of 12% and the
Robin B.C. with an error of 6%.
Though, one would prefer to get updated parameters that correspond to an equally distributed

error on both B.C. (i.e., something like xN
oExR

oE9%). Assuming an a priori knowledge of the set-
up of the type xN

oE2�x
R
o; the coefficient g is set to 0.33 so that the previously updated parameters

that satisfied the CRE threshold now yield:

xo ¼ g�xN
o þ ð1� gÞ�xR

o ¼ 0:33�12%þ 0:67�6% ¼ 4%þ 4% ð9Þ

ARTICLE IN PRESS

V. Decouvreur et al. / Journal of Sound and Vibration 278 (2004) 773–787 777



One can see that using the g weight forces the updating process to admit only parameters that
equally distribute the CRE on both boundary conditions. If no information is available enabling
one to determine the value of g before starting the optimization step, the ratio of the errors on the
Neumann and Robin B.C. is evaluated at the end of the minimization procedure. It allows one to
assess the value of the factor g which is used to run a new optimization process.

3. The modified CRE

Since one would like to update a continuous model with reference to experimental
measurements, an additional measurement error adds to the error caused by the model
formulation itself. Just as for the model, it is necessary to define the reliable and less reliable
equations for the measurements and to build an error measure on the less reliable experimental
quantities. Measurement errors are among others due to the positioning of the sensors and
microphones, their accuracy, calibration, measurement orientation, reproductivity and repeat-
ability of the measurements [8].
For instance, measurement errors occur for two types of data:

* pressure measurement by using microphones,
* velocity measurement by using accelerometers or velocity transducers.

3.1. The measurement error

In what follows, one assumes that reliable experimental information is:

* the measurement of the angular frequency,
* the positioning of the sensors and microphones,
* the calibration of the sensors and microphones,
* the directions of the measurements and excitations.

These define the admissibility Sad for the measurements. Considering the two types of
measurement error described in Section 3, the measurement errors at a given frequency are
described as follows:

* pressure measurement (amplitude and phase): jP1p �P1 *pj2;
* velocity measurement (amplitude and phase): jjP2 %vn �P2 *vnjj

2:

where jj jj2 and j j2 denote energy norms,P1 andP2 are projection operators that give the value of
the pressure and normal velocity, respectively, at the corresponding sensors, and *p and *vn are the
measured pressure and normal velocity.
A projection operator P is a matrix defined by

Pii ¼ 1 if the dof i is measured;

Pii ¼ 0 if the dof i is not measured;

Pij ¼ 0 if iaj: ð10Þ

ARTICLE IN PRESS

V. Decouvreur et al. / Journal of Sound and Vibration 278 (2004) 773–787778



3.2. Quality of a model with respect to measurements: the modified CRE

By summing the constitutive relation error and the measurement error at angular frequency o;
the modified CRE e2o is obtained:

e2o ¼ x2o þ
r

1� r
fzjP1p �P1 *pj

2 þ ð1� zÞjjP2 %vn �P2 *vnjj
2g; ð11Þ

where 0pzp1 and 0pro1: The weighting factor r=ð1� rÞ translates the trueness in the
measurements with respect to the model accuracy. If the error on the measurements is known to
be smaller than the modelling error, the parameter r should be consequently adjusted to a value
that is greater than 0.5. Indeed, r ¼ 0:5 weights equally the modelling error ðxoÞ and the
measurement error.
Similarly, z allows to weight the relative importance of the pressure and velocity measurement

errors. Indeed, it is assumed that pressure as well as velocity measurements are performed, each of
those being polluted. The factor z is tuned according to the relative trust that one places in the
pressure and velocity measurements. For example, if the pressure measurements are known to be
much more polluted than the velocity ones, z should tend to 0. Otherwise, z is set to 0.5.
The use of these two coefficients r and z can be explained in the same way as that done for the

weight g:
The modified CRE is an indicator of the verification of the less reliable quantities and equations

of the problem. Now the problem becomes

Find soðp; vn; %vnÞj
soASad ;

e2ðsoÞ is minimum:

(
ð12Þ

The solution so will thus verify the reliable equations and quantities exactly by satisfying the
admissibility. It will satisfy the less reliable quantities and equations as well as possible by
minimizing e2o:
The study of an acoustic system being usually led in a finite frequency range ½omin;omax�; a

weighting function zðoÞ is defined so thatZ omax

omin
zðoÞdo ¼ 1 zðoÞX0; ð13Þ

and the mean modified CRE in the interval ½omin;omax� is then given by

e2 ¼
Z omax

omin
e2ozðoÞdo: ð14Þ

If the same weight is attributed to each updating frequency, the function zðoÞ is given by

zðoÞ ¼
1

ðomax � ominÞ
: ð15Þ

More complex functions can be used to focus on a given zone of interest of the frequency range.
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4. Finite element discretization

The method proposed in this paper is very general and can be applied to all kinds of numerical
approximations such as the finite element method, boundary element method, meshless method
[9], etc. The CRE method is illustrated here for the case of a finite element discretization. It is
assumed in what follows that the interpolation and the pollution errors are kept under control by
adapting the mesh size to the frequency [10]. Indeed, the sum of these errors has to be sufficiently
small compared to the modelling error described before, otherwise the updating presented here
does not make sense. It is first necessary to introduce a pressure formulation by introducing
pressure variables ðP;Q;RÞ as follows:

p ¼ P; ð16Þ

vn ¼ AnQ; ð17Þ

%vn ¼
j

or
@R

@n
: ð18Þ

The CRE becomes

x2oðP;Q;RÞ ¼ go2r2
Z
@2O

j

or
@P

@n
�

j

or
@R

@n

� ��
j

or
@P

@n
�

j

or
@R

@n

� �
dG

þ ð1� gÞo2r2
Z
@3O

ðAnP � AnQÞ�ðAnP � AnQÞdG: ð19Þ

Nodal unknowns are associated to the pressure fields as follows:

Pressure field Nodal unknown

P P

Q Q

R R

Note that fields Q and R are only defined on @3O and @2O; respectively. From the variational
formulation (6), one writes the corresponding discrete matrix equation:

½K�Pþ jor½C�Q� o2½M�P ¼ ½E�R; ð20Þ

where

* ph ¼ NtP is the finite element approximation of the pressure,
* ½M� ¼ 1=c2

R
ON

tNdO is the mass matrix,
* ½K� ¼

R
O=tNrNdO is the stiffness matrix,

* ½C� ¼
R
@3O

AnN
tNdG is the impedance matrix,

* ½E� ¼
R
@2O

=t
nNNdG is the system excitation matrix due to normal velocities imposed on

boundary @2O:
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CRE (7) is written for the FE discretization:

x2oðP;Q;RÞ ¼ gðR� PÞ�½Kn�ðR� PÞ

þ ð1� gÞr2o2ðQ� PÞ�½D�ðQ� PÞ; ð21Þ

where

* ½Kn� ¼
R
@2O

rt
nNrnNdG;

* ½D� ¼
R
@3O

A�
n AnN

tNdG:

Problem (12) to be solved is rewritten:

Find s0o ¼ ðP;Q;RÞj
½K�Pþ jor½C�Q� o2½M�P ¼ ½E�R;

e2oðs
0Þ is minimum:

(
ð22Þ

5. Two-dimensional numerical applications

At this stage, only two-dimensional numerical simulations are run. Such problems are of course
non-realistic (because reality is three-dimensional) so that experimental data acquisition is not
possible. Consequently, error evaluations are made by comparison with numerical results that are
known as being accurate and reliable instead of experimental data.
The updating is performed at a few points located inside the acoustic domain. For the two

following cases studied one limits oneself to the modelling error related to the impedance relation
(3) and to the pressure measurement error. Pressure measurement is computed at a few points
distributed inside the acoustic domain. In practice, it is important to have enough measurement
points to be able to filter the noise on these measurements, and to avoid being in a situation where
all measurement points would coincide with pressure nodes, at a given frequency.
There is only one value of %vn given on @2O; so that the pressure value can be normalized for a

unit value of %vn: In that case, the measurement error is on the pressure only, and the error
described in Eq. (11) reduces to

e2o ¼ o2r2
Z
@3O

ðvn � AnpÞ�ðvn � AnpÞdGþ
r

1� r
jP1p �P1 *pj

2: ð23Þ

The corresponding relative error for each frequency o is obtained by dividing e2 by s2; that is
for instance

s2 ¼
o2r2

2

Z
@3O

ððAnpÞ�Anp þ v�n vnÞdG: ð24Þ

The relative modified CRE is then written erel ¼ e=s:

5.1. First application: pressure field inside a car cabin with 2 real An

Fig. 2 presents a mesh of the car cabin that has been studied. The mesh comprises 298 nodes
and is made up of linear elements with 4 nodes. The excitation of the car structure is caused by the
vibration of the firewall. The corresponding boundary condition is represented by a dotted bold
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line on the mesh. It is assumed in this simulation that only two parts of the cabin are covered by
absorbing materials and cause the attenuation of the ambient noise inside the car. The first
absorbing material overlays a part of the top of the car (see the heavy line in Fig. 2) with an
impedance value Zn1 ¼ 600 N s�1 m�3: The second absorbing material corresponds to the front
side of the back of the driver seat ðZn2 ¼ 800 N s�1 m�3Þ: At this time, impedance values are
supposed real for that first application.
The frequency response function of such a set-up calculated at the ear of the driver (see the

bullet on the car mesh (2) for the location) is shown in Fig. 3: the frequency range goes from 0 up
to 1000 Hz; and the ordinate corresponds to the sound pressure FRF in dB when the firewall is
excited with a normal velocity equal to 1 mm s�1: The FRF is computed using the ACTRANr

software developed by Free Field Technologies [11]. The updating algorithm is run for five
different frequencies in the range 0–1000 Hz : f20; 100; 300; 600; 1000gHz:
The updating parameters are the impedances Zn1 and Zn2 of the absorbing materials described

before. Initial values for these unknowns are set to 1000 N s�1 m�3: Fig. 4 illustrates the modified
CRE to be minimized with respect to Zn1 and Zn2 at each updating frequency. The error shown is
frequency averaged and clearly indicates the values of the impedances minimizing the function.
If there are many different admittance coefficients, it is no more possible to examine the shape

of the function to be minimized. That is the reason why the addressed numerical example presents
only two admittance coefficients. In the framework of updating models, the unknowns are
assumed to be sufficiently close to the initial values that are used at the first iteration of the
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Fig. 2. 2D mesh of a car cabin.

Fig. 3. Sound pressure FRF at the ear of the driver for mesh (Fig. 2).

V. Decouvreur et al. / Journal of Sound and Vibration 278 (2004) 773–787782



optimization procedure, so that a local minimization algorithm is used to find the minimum of the
error function.
Besides, if one cannot guarantee that the global minimum was found, a CRE level after

updating that is lower than the one before running the optimization process certifies that the
model was improved by the updating procedure.
The optimization algorithm that has been used in the numerical examples is a multidimensional

unconstrained non-linear minimization algorithm of Nelder–Mead [12] type.
Running the modified CRE technique implemented in a MATLABr environment with

stopping criterion erelp10�4 yields the two following values for the updated impedances:

Zn1 ¼ 600:007 N s�1 m�3;

Zn2 ¼ 799:995 N s�1 m�3:

The relative modified CRE for the initial values of the two impedance coefficients Zn1 and Zn2 was
about 38%. After updating the acoustic model, that error diminished below the prescribed value
of 0.01%, which shows that the updating technique effectively validates the acoustic model.
For sure, such error level of 0.01% can only be reached for ideal study cases, i.e., without

measurement noise and when referring to simulated acoustic fields. Real-life cases should exhibit
error values that rarely decay below the 5% barrier.

5.2. Second application: updating a 2D car cabin with 5 frequency dependent complex An

The studied set-up is the same as before, but the pressure field is now attenuated by the
contribution of 5 absorbing materials covering the seats, the roof, the floor and the dashboard of
the car. These materials are characterized by complex frequency dependent admittance
coefficients of the form: An ¼ C1 þ joC2; where C1 and C2 are constant values and o is the
angular frequency.
The mesh of the set-up is identical to the previous one, but more absorbing materials are now

covering the boundaries, as can be seen in Fig. 5 where the bold lines correspond to the regions
covered by one of the absorbing materials.
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5.2.1. Updating without measurement noise
In this application, reference measurements are computed from a FE simulation with the exact

values of the 5 updated parameters. Table 1 shows the reference values of the admittance
coefficients and the error on each of these after updating the model from 0 up to 500 Hz: These
errors are frequency average values, i.e., each average error is the sum of the errors at each
updating frequency divided by the total number of updating frequencies, which is 100 since the
set-up was updated at each multiple of 5 Hz:
The initial values of the parameters to be updated were set to twice the exact values. The results

of Table 1 are quite satisfying.
Note that the number of frequencies at which the set-up is to be updated depends on factors like

the type of material that is characterized by the updated parameter. Indeed, some materials
exhibit high frequency dependence (and thus need lots of updating frequencies) while others
present quasi-frequency independent behaviour.

5.2.2. Updating with measurement noise

In this section, simulated noise is added to the computed measurements. The noise is obtained
by multiplying the real and imaginary parts of each measurement by ð1þ w�NÞ; where N is a
random number chosen from a normal distribution with mean zero and variance one, and w is the
weight applied to the normal distribution, and so the average noise level. The noise affects both
the amplitude and the phase of the reference pressure field.
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Fig. 5. 2D mesh of the car cabin with 5 absorbing materials.

Table 1

Frequency average CRE and error on updated admittance coefficients

Unity 10�3 N�1 s�1 m3 (%)

CRE 0.05

An1 2þ 0:002oj 0.20

An2 1� 0:0015oj 0.41

An3 3þ 0:001oj 0.37

An4 5þ 0:009oj 3.47

An5 4� 0:008oj 0.77
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Updating the set-up presented above with an average noise level of 5% (i.e., w ¼ 0:05)
generated results of Table 2. One observes that the error levels after updating are of the order of
growth of the average noise level on the measurements.
Fig. 6 plots the amplitude and the phase of the FRF from 0 up to 500 Hz of the 2D car with the

5 previously defined admittance coefficients. The exact FRF together with that coming from the
updating process with polluted data are plotted. As one can see, the 5% modified CRE level
allows for quite a good match with the reference curve.

6. Conclusions

A new updating technique inspired from structural dynamics has been adapted to acoustics.
The goal here is to update a continuous model with reference experimental data.
Based on the constitutive relation error that basically separates data into reliable and

less reliable ones, the paper discusses this splitting in what concerns acoustic relations, boundary
conditions, and experimental information. Attention is paid to the error coming
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Table 2

Frequency average CRE and error on updated admittance coefficients with measurement noise

Unity 10�3 N�1 s�1 m3 (%)

CRE 4.82

An1 2þ 0:002oj 3.39

An2 1� 0:0015oj 4.55

An3 3þ 0:001oj 2.42

An4 5þ 0:009oj 4.05

An5 4� 0:008oj 5.08

Fig. 6. Sound pressure FRF at the ear of the driver for 5 An with polluted measurements. Dashed line: reference FRF,

dotted line: updated FRF.
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from experimental measurements that is integrated to the technique which becomes the modified
CRE.
The exposed technique applying to every kind of numerical approaches, yet the paper deals

with one of these: the finite element formulation. The implemented technique is applied to
simulate the sound pressure inside a two-dimensional car cabin with absorbing materials on the
top and on the driver seat, which constitutes a first validation of the modified CRE technique in
acoustics: the impedance values of the absorbing materials are accurately updated. Then, the
modified CRE updating technique is successfully applied to simulate the sound pressure inside the
same car cabin but with 5 absorbing materials defined by frequency-dependent complex
admittance coefficients covering the boundaries.
The same validation is performed when adding simulated noise to the measurements, allowing

the technique to still successfully fit the reference FRF with the updated one.
Since the modified CRE updating technique and its application for determining frequency

dependent complex admittance coefficients is promising, three-dimensional real-life test cases are
planned to be achieved, using more realistic models for the admittance coefficient. But model size
reduction should precede the application of the technique presented in this paper to 3D model
updating, due to the highly increasing computational time with the number of degrees of freedom,
as shown in Ref. [13].
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